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ABSTRACT: Wave motion in an infinite transversely isotropic, thermoelastic plate in the context of
conventional coupled thermoelasticity (CT), Lord-Shulman (LS) and Green-Lindsay (GL) theories of
generalized thermoelasticity has been studied by using Homotopy perturbation method (HPM). The
expressions for displacement components and temperature are derived. Finally, the numerical solution is
carried out for transversely isotropic plate. The dispersion curves of displacements with thickness and
time are presented graphically for coupled and generalized theories of thermoelasticity.

Keywords: Thermal Relaxation; Transversely Isotropic; HPM.

INTRODUCTION

He ™ has studied few problems with or without small parameters with the homotopy perturbation
technique and the proposed method does not require small parameters in the equations, so the
limitations of the traditional perturbation methods can be eliminated. The initial approximation can be
freely selected with possible unknown constants. The approximations obtained by this method are
valid not only for small parameters, but also for very large parameters.

In the numerical method, stability and convergence should be considered, to avoid divergent or
inappropriate results. Therefore, approximate analytical solutions were introduced, among which
HPM, He ™ are the most effective and convenient ones for heat equation. Developing the
perturbation method for different usage is very difficult because this method has some limitations and
based on the existence of a small parameter. Therefore, many different new methods have recently
introduced some ways to eliminate the small parameter such as artificial parameter method. One of
the semi-exact methods is HPM, introduced by He ™ has successfully been applied to solve many
types of linear and nonlinear functional equations. The methods have a useful feature in that it
provides the solution in a rapid convergent power series with elegantly computable convergence of
the solution. This method, which is a combination of homotopy in topology and classic perturbation
techniques, provides us with a convenient way to obtain analytic or approximate solutions to a wide
variety of problems arising in different fields. He has studied few problems with or without small
parameters with the homotopy perturbation technique and the proposed method does not require small
parameters in the equations, so the limitations of the traditional perturbation methods can be
eliminated. The initial approximation can be freely selected with possible unknown constants. The
approximations obtained by this method are valid not only for small parameters, but also for very
large parameters. Chun et al. ["! solved the wave equation, where the domain of the space variable is
unbounded, and a modified homotopy perturbation method to some nonlinear diffusion equations to
obtain exact solutions without any restrictive assumption that may change the physical behavior of the
solutions. Biazar and Ghazvini ® studied the problem of convergence of HPM and presented
sufficient condition for convergence of method. Babolian et al. ! proposed some guidelines for
beginners who intend to solve some problems using HPM.

The present work is an attempt to find a displacement and temperature relation from three-
dimensional analog of the Rayleigh-Lamb frequency equation that would be sufficient for wave
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motion in generalized thermoelastic plates. The analysis is based on the approach and HPM used in
Refs (61,

FORMULATION OF THE PROBLEM:
We consider wave motion in a transversely isotropic coupled thermoelastic plate of thickness 2h

initially at uniform temperature T,,. The origin of Cartesian co-ordinate system oxyz is taken at any
point O in the middle plane of the plate and z-axis is pointed along the thickness of the plate. We
assume that the plate is infinite in X and vy directions which thus occupies the region

Q={-w<xy<w-h<z<h}

In the regionQ), the corresponding basic non dimensional governing equations for homogenous
transversely isotropic linear thermoelasticity in the absence of body forces and heat sources are given

by
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where U;(i=1, 2, 3)are the displacement components, C; are isothermal elastic parameters,

T =T(x,Y,z,t)is temperature change; p is mass density and C, is the specific heat at constant
strain, This type of medium has only one axis of elastic symmetry that which is also an axis of
thermal symmetry and is taken along z-—axis. So that S, =(Cy+Cp)o +Cuts,

By =2C,a, +Ca,, g, K, are the coefficients of linear thermal expansion and thermal
conductivity, in the direction orthogonal to axis of symmetry ,a,, K, are the corresponding
guantities along the axis of symmetry, &, ,1=212 is Kronecker delta, where k =1 corresponds to
Lord —Shulman (LS) and k=2 corresponds to Green Lindsay (GL) theory of generalized
thermoelasticity, {,, t, are thermal relaxation times, moreover t, =0=t, leads to coupled (CT)
theory of thermoelasticity and further 3, = 0= f3; leads to uncoupled theory of thermoelasticity.

It can be shown thermodynamically that K, >0, K, >0 and alsop >0, T, >0. In addition, we

assume that C, > 0 and isothermal linear elasticities are components of positive definite fourth-order
tensor. The necessary and sufficient conditions for satisfaction of this requirement are

2 2 2
¢y >0, Cy >Cpy  Cu >0, Cas(Cpy +Cpp) >Cp5°.

The non-dimensional quantities
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where " is characteristics frequency, & is thermoelastic-coupling constant and V,, are the velocity

of longitudinal wave.
Initial conditions

u(x, v, z,0)=v(x,y, z,0)=w(x, y, 2,0)=T(x,y, z,0)=0,
u(x, y, z,0)=v(x, y, z,0)=w(xy, z,00=T(x,y, z,00=0, (6)

Boundary conditions
u(x, y, th,t)=v(x,y, £h, t)y=w(x,y, £h, t)=T(x,y, +h,t)=0 (7)

SOLUTION OF THE PROBLEM:
We assume harmonic wave solution of the form

(u, T, v, wlx, y, z, t) =(z, t) exp{-i(F.A)} 8)

Where T(z, t)=(U(z, t), O(z, 1),V(z, t),W(z, t)) is amplitude vector, T =(X, y) is position
vector and i =(I,m) = (sina, 0) is wave number, wherec is angle of incidence with axis of
symmetry ( Z -axis).

On applying solution (8) to governing Egs. (1) - (4) and initial and boundary conditions Egs. (6) and
(),
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Initial conditions

U(z, 0)=V(z, O)=W(z,0)=asin(%rj ,0(z,0) =T,
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U(z, 0)=V (z, 0) =W (z,0) =6(z,0) =0 (13)

Boundary conditions
U(xh,t) =V (£h, t)=W(xh, t) =6(£h,t)=0 (14)

BASIC IDEA OF HOMOTOPY PERTURBATION METHOD:
To convey an idea of HPM, we consider a general equation of the type

L(u)=0, (15
In equation (15), L is an integral or differential operator. We define a convex homotopy H (U, p)

by
H(u, p) = - p)F (u)+ pL(u) (16)

F (u) is functional operator with known solution v, which can be easily obtained. It is clear that
H(u, p)=0 17)
From which we have H(u, 0) = F(u)and H(u,1) = L(u).

This shows that H(U, p) continuously traces an implicitly defined curve from a starting point
H(Vo’ 0) to a solution H(f,1). The embedding parameter increases monotonically from zero to

unity as the problem F(u)=0 continuously deforms the original problem L(u)=0. The
embedding parameter can be considered as an expanding parameter. The HPM uses the homotopy
parameter * P’ as an expanding parameter to obtain

U= p'U =Uy+ pu + pu, +--- (18)
i=0

If p— 1, then equation (18) corresponds to (16) and becomes the approximate solution of the form

0

u=limu=>u, (19)

i=0

It is well know that the series (19) is convergent for most of the cases and also the rate of convergence
is dependent on L(u).

APPLICATIONS:
In this section we present the homotopy perturbation method for solving linear partial differential

coupled Egs. (9) - (12), and initial and boundary conditions (13) and (14). According to the homotopy
perturbation, we construct the following homotopy:

oU” U, & PR W
(1_p)|: 8t2 - 8t20:|+p{(|2—czg+¥}} +I|Q€—I|8t9}=0

NV, 2 ). . W
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33



oW AW, * &\ . N —0 .
(1— p)|:?— 8{20:|+ p{(czlz—clgﬁ'?y/ +IQ|E+[35810}=0

06" o6, —6 0 0\ys . O -
(1—p){6t—a°} p{[lz 822}9 +at(1+toaj0 +|gatat[|u +Iﬂaz}:0

or equivalently;

2] 2 2 *
a@tu GicH { Ju +|Ic3——|I60} 0
|

8—2 *+i|c3ﬂ* =0
“ o

oW AW, |dw, O Ny U 20
PO atzo +p{ atzo +(czlz—qg}w +|QIE+[35810}:0

0

2 2 *
AL S L P ) PRGN G, TR L
a a Pla N e a

0

Where 0, =1+52kt1§’ o, =1+ 51kt0§ and U,,V,, W, , 6, are initial solutions.

Suppose the solutions of system of Egs. (20) — (23) has the form
U™ =>pU, Uy+pU,+pU,+-

i=0

V*=Zpi\/i =V0+pV1+p2V2+"'

i=0

W*=Zin\/i A/Vo—i—le—i—pZVVz—i----
i=0

6" =Y p'6, =6, + p6, + p’6, +
i=0

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

Substituting solutions (24) — (27) into Equations (20) — (23), and comparing coefficients of terms with

identical powers of P, leads to:
0. 62U0 GZUS

; - -0
P ot? ot?
0.0V, 0%,
; - -0
P otr  ot?
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Initial conditions
P’ 1U,(z, 0)=V,(z, 0)=W,(z,0)=asin(5z) , 6,(z, 0) =T,

P 1U.(z, 0)=V,(z, 0)=W.(z,0) = 6,(2,0) , i=1 2,3, -

p':U,(z,0)=V,(z, 0)=W,(z,0)=6,(z,0)=0 i=0,1, 2,3, -
Boundary conditions

P'1U,(h, 1) =V,(th, ©)=W,(th, 1)=0,(th,)=0 i=0,1,23, -

Suppose initial solutions
U, =V, =acos(e,t)sin(dz) W, =acos(w,t)sin(s z),

0, = ﬂsin(6 z)exp(— JK&? t)
T

Where @, =\/§5,wL =\/C_l5, o=nlh.
Solving equations (28) and (29), by using (30) — (32), we get
U, =V, =acos(et)sin(5z),

W, =acos(w,t)sin(sz),
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0, = %sin@ 2)expl- VK 571),

U, =sin(5 ) cos(oyt)+ £ expl- VK67 )+ (% cos(w,t)cos(5 2)

V, = 6 cos (o, 1)sin (5 2)+ L cos (o,1)eos (5 2),

W, = 00s(5 2) ) cos(wt)+ £ exp (- VK87 )+ g2 cos (o, t)sin (5 2)

6, = cos5 2)4? cosdart)+y sinfe ] -sin(6 gt cosart)+y? sinfeyt)+ £ expl—VK ™t
U, =sin(6 2){A, codort) + A,sin(ayt)+ A, expl-VK 2t + cod5 2){A, codo t)+ Agsinla )}

V, =sin(6 2)B,, cos(at) + B, expl- VK57t + By, cos(ayt)eos(s 2)

W, =sin(s 2){D,; cos(@,t)— Dygsin(e, 1))+ cos(5 2)|Dy, cos{axt) + Dy, sin(art) + D expl- VK 62 t)},
0, =5in(5 2)[E,ccosloyt)+ Eyssin(ant) + E expl VK 57t} cos(5 2)[E,sinlen, 1)+ E,, cos(y 1)}
U, =sin(s 2){F,, coart)+ R, sin(ert)+ Fyy expl— VK82t + cod 5 2){F, cod e )+ Fssin(e )}

V, =Sin(o 2)G,,cos(oyt) - Gy sin(art) - Gy, expl- VK 67t + cos(s 2)f6,, cos(on t) - Gy sinf, )]
W, =sin(6 2){H,, cos{@,t)+ Hu, sin(e.t)} + cos(8 2)|Hyq cosfart) + Hy sin(ayt)+ Hyg expl-+Ko? t)}’

6, =sin(5 z){Jllsin(a)rt)Jr J,, cos(eort)+ Jyg exp(— JK&? t)}+ cos(8 z}{J,, sin(w )+, cos(a)Lt)}’

Where

P = a[(s2 + czéz)a){z —1J,z//l(°’ =icsadm, 2, E° = 4iT,K 5 s(1-1,5,8°VK),

¢ = a[(0452 +,6% o, —1J,1//l(l) =icsadm, ", 9P = a[(czs2 16,62 ) —1J,

y? =ic,sadm, 2, EP = —4BT,K 6 °n (1-1,6,6°VK) ¢ =—aBse, v =act,5,p0,,
$9 =—issa,y® =iac stydymr , & = 4Ty {52 + K62) 2K M2 +1,4K 52 -1},

A,=67%," [(32 +C,0 Z)q)l“’) + is¢2(3>]+ isS ‘102‘1[031//1(2) +1,65,, \/gy/f)] :
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A, =5‘201‘1[(52 +0252)4/1(°) —is¢3)]+|55 C, [03 2 t152k\/_1//(3)],
A, =-is5 7, 5@ —16, Jad®], A, =iss %,
Ay =K [(s2 +¢,02 )50 —ise®] - 52K [\/? £O _ic,s51E® ]
B, =5, (c,s2 —¢,02 P +isS e ? B, =572, (c,57 — ¢,6% P +isS cyg?,
By, =ise,057 Dy =67¢ " [(c,52 +c,62 2 —isc,op® - Bog® |- Bt Pe, M2,
Dy, = 672¢, (6% — ¢,82 @ +isc, 08 — Bop® |- Btd,w e, M,

= B 5 — 18,0, 0 ] Dy, =—fc, 5y —t152kc1'1/2¢2(3)]’

Dy =0 “K (c,52 + €02 52 +isc, 06 + BS(E® +1,6,,6° 5(3))]

E,=-0 _1C1_1/2 (52 +Ko? )¢1(3) + 5\/C_1[t1¢1(3) —&1y0y (iS ‘//1(0) - ﬁ_5¢1(2) )]

E, =57, "2 + K62 @ 51, Jey® +elisy” — Bop®)

Es=07'c, Y3(s2 + Ko2 W —51,,/c, 6 + £1,65,1/c, (is4® + Boy )

E, =0, *(s2+ Ko? @ + 5t Jeur +elisg® +/351//(2>),

E,s =0 2K Y?(s2 + Ko? 2® + 574K E® + e[isgl“” + BED +1,5,5°VK (is&® + BoE® )] |
R = (I8 +0,6% JA ~is(ciDy, + By + 16,0 E)].

R = or °[(5° + .67 A —is(CsDyy + By 6,00 Eu)].

Fo =K 167*[[s? + €,62 Ay —isle,Ds + Exy 6,67 VK By | |

S A RS |

Fis =0, [(67 + €267 JAg —i5(c.Dys + By 16,01 Eyp)].

Gu=0;" [(c432 + (;262)8ll — isc35D12] Gy, =iscyd Do,
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G, = 5‘4K‘1[(c452 +¢,62)By, — isc,0D,, | Gy, = @, 2 [(c452 +¢,0%)By, + isc,oD,, |

Gy, =isCy0 D13a)L_2.’ Hy, = COL_2 [(CZSZ _C152)D11 — iSO C,A, _ﬁ_é‘(ElZ +1,6,0, Ell)]

H,, = _a)L_Z [(CZSZ - C152)[)13 +iS0 CA; + ﬁ_g(Ell —4,6,0,E), )]

Hy = C()T_2 [(CZSZ - C152)D12 +is6 C A, + ﬁ_5(E14 + 1,05, E13)]

Hy=aop [(CZSZ _C152)D14 +is6 C A, + 35(E13 —1,6,.0r E14)]

H, = —5‘4K‘1[(c232 - 0152)D15 +iSOC, AL + 0 E15£l—t152k52\/?)],

31 = -, M(s? + K62y, + ooy [Ey, + 26, (isA,, + 5D, )| - £(isA, + 5BD,,)

3, = (5% + K% )y, —tooy [Eys — 6, (isA + 5BDy, )| £(isA, + 58Dy, )

31y =62K2(s? + K62 )Eyq +1,0° VK [Eyg + &8y, (isAs + 5BDy )] - £(isAys + 58D

3, = -0, (5% + K62 )E,, +tym, [Ey, + 6, (isA, — 5BDy, )| (isA, + 55Dy

3y = o, (s? +K6?)E,, —tyo, [Ey, + &6, (isA; — 58Dy, )| £(isA, — 58D,

If p — 1, then equations (24) to (27) becomes the approximate solutions of the form
U= IirrIIU* =U,+U, +U, +---
P
=sin(s z){(All +Fy+6® +a)cos(ant)+ (A, + Fy )sin(ort)+ (Ag + Fy +£° )exp(— JK5? t)}
+cos(8 z){(A12 +F, +yl® )cos(a)Lt)+ (A, + F15)sin(a)Lt)}

V=limV™ =V, +V, +V, +---

p—1
=sin(5 z)[( " 1+ B, +G,, + a)cos(a)Tt)— Gy, sin(eyt)+ (B13 -~ Gls)exp(— JK 5?2 t)]
+c0s(5 Z)[(‘//l(l) +B, +Gy, )COS(th) —Gyssin (th)] ’

W = limW™ =W, +W, +W, +---

p—-l

38



= sin (5 2){(¢? + D,, + Hy, + a)cos (o,t)+ (Hy, — Dy )sin (o, t)}

+cos(6 Z){(‘//1(2> +Dp, + H13)COS(a’rt)+(D14 + H14)Sin(a’rt)+( D+ D, + HlS)exp(— \/?52'[)}
0= Iirrlle* =0, +06,+60,+-
P

=sin(6 Z){(Em +J, -4 )COS(a)rt) + (E13 —y + Jll)Sin(wl't) + (E15 +J13 =& +4T, /n)exp(— JKs? t)}
+¢0s(8 2w +Epy + Jy, Jsin(eo,t)+ (62 + E,, + 3,4 Jeos(e, t )}

CONCLUSION

The homotopy perturbation method has an advantage in comparison to the traditional perturbation
methods. The approximate analytic solution obtained applying the homotopy perturbation method for
solving coupled complex-valued second-order differential equations is in very good agreement with
the exact closed form analytic solution. In this paper, we have shown that the HP method can be used
successfully for finding the solution of the linear-boundary value problem.. The HP method is not
affected by round off errors and the solution is found without taking a long time and a large amount of
computer memory. Therefore, it may be concluded that this technique is very powerful and efficient
in finding the analytical solutions for system of differential equations.
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